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Abstract

Background: Prostate cancer is a major health concern in aging men. Paralleling an aging society prostate
cancer prevalence increases emphasizing the need for efficient diagnostic algorithms.

Methods: Retrospectively, 106 prostate tissue samples from 48 patients (mean age, 66 +/- 6.6 years) were
included in the study. Patients suffered from prostate cancer (n=38) or benign prostatic hyperplasia (n=10)
and were treated with radical prostatectomy (RP) or Holmium laser enucleation of the prostate (HoLEP),
respectively. We constructed tissue microarrays (TMAs) comprising representative malignant (n=38) and
benign (n=68) tissue cores. TMAs were processed to histological slides, stained, digitized and assessed for the
applicability of machine learning strategies and open source tools in diagnosis of prostate cancer. We applied
the software QuPath to extract features for shape, stain intensity and texture of TMA cores for three stainings,
H&E, ERG, and PIN-4. Three machine learning algorithms, neural network (NN), support vector machines
(SVM), and random forest (RF), were trained and cross-validated with 100 Monte Carlo random splits into
70% training set and 30% test set. We determined AUC values for single color channels, with and without
optimization of hyper-parameters by exhaustive grid search. We applied recursive feature elimination (RFE) to
feature sets of multiple color transforms.

Results: Mean AUC was above 0.80. PIN-4 stainings yielded higher AUC than H&E and ERG. For PIN-4
(color transform saturation), NN, RF, and SVM revealed AUC of 0.92 ± 0.06, 0.91 ± 0.05, and 0.93 ± 0.04,
respectively. Optimization of hyper-parameters improved the AUC only slightly by 0.01 − 0.02. For H&E,
feature selection resulted in no increase of AUC but to an increase of 0.02 − 0.05 for ERG and PIN-4.

Conclusions: Automated pipelines may be able to discriminate with high accuracy between malignant and
benign tissue. We found PIN-4 staining best suited for classification. Further bioinformatic analysis of larger
data sets would be crucial to evaluate the reliability of automated classification methods for clinical practice
and to evaluate potential discrimination of aggressiveness of cancer to path the way to automatic precision
medicine.

Keywords: prostate cancer; prediction; quantitative features; statistical analysis; machine learning; neural
networks; automated pipelines
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Introduction
Prostate cancer (PCa) is the second most common
cancer and the fifth leading cause of cancer death in
men [1]. Incidence rates vary across regions and PCa
is the most frequently diagnosed cancer in men in 112
of 185 countries of the world [1]. One established risk
factor is an advancing age [1]. Due to the demographic
development of an aging society we may expect an
increasing PCa burden in the future [1]. Diagnosis
of clinically significant prostate cancer is a challeng-
ing process. Most prostate cancers are slow-growing,
a subset of prostate cancers has an aggressive clinical
course and leads to death. Prostate cancer is usually
suspected on the basis of screening procedures: dig-
ital rectal examination and/or prostate-specific anti-
gen levels [2]. For definitive diagnosis, histopathologi-
cal verification of PCa in prostate biopsy cores is re-
quired. Grading of PCa with the Gleason system is
the strongest prognostic factor for clinical behaviour
and treatment response [2, 3]. Computerization and
the efficient addressing of crucial cancer care touch-
points along the patient clinical pathway are major
goals of current studies in the field of artificial in-
telligence (AI) in medicine [4]. Clinical decision sup-
port systems aim to assist physicians and other spe-
cialists in the analysis of patient’s data and diagnosis
of diseases [5]. Quantitative imaging, machine learn-
ing (ML) algorithms, and AI have been proposed as
potential solutions for assisting clinicians [6]. ML and
AI have the potential to improve the accuracy and
robustness of the diagnosis of PCa [7, 8]. Recent stud-
ies on PCa addressed the prediction of Gleason grade
scores [9], the detection of PCa in biopsy specimen [10],
the extraction of cancer stage from written reports in
structured form [11], and the prediction of risk of PCa
based on demographic characteristics [12]. Features ex-
tracted from digital images in pathology may have the
potential to predict recurrence in PCa patients after
surgery [13]. ML and AI have been used for cancer de-
tection and grading based on whole image analysis in
prostate biopsies [14, 15, 10, 16, 17, 18]. For the clas-
sification of benign and malignant tissues, multi-view
boosting methods have been proposed [19]. The re-
sults have been compared to single-view classification
and have reached a high area under the curve (AUC)
score of 0.98 [19]. For a review of applications of deep
learning to cancer detection, we refer to Pantanowitz
et al. [20] and literature cited therein. Application of
ML approaches may help in assisting physicians in the
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examination and prioritization of patient’s data, for a
discussion, we refer to Bulten et al. [21].

The ground truth is usually based on visual inspec-
tion, evaluation and classification by expert pathol-
ogists. Besides H&E images additional immunohisto-
chemical workup can aid the urologic subspecialist in
identifying and classifying cancer, e.g., see [8, 22]. Re-
searchers in the field of digital pathology have put a
considerable effort in the development and evaluation
of methods especially for H&E images. Despite the well
known advantages of immunohistochemical stainings
in daily standard of care clinical pathology, its possi-
ble additive prediction power is only scarcely studied
and evaluated. Exploring the suitability of immunohis-
tochemical stainings for automated classification tasks
and machine learning models may provide an enhanced
possibility for high precision digital pathology in the
automatic classification of prostate cancer.

In this work, we considered the staining methods,
H&E, ERG, and PIN-4. H&E is a standard staining
among others for cancer diagnosis [23]. ERG expres-
sion is a potential biomarker to predict the aggres-
siveness of prostate carcinoma with potential prog-
nostic impact [24, 25]. PIN-4 is a cocktail of mul-
tiple markers and may help to distinguish between
high-grade prostatic intraepithelial neoplasia and ade-
nocarcinoma [26, 27]. Sabata et al. have investigated
the identification and classification of glands in a
whole slide image of PIN-4 stained prostate needle
biopsy [27]. To our knowledge, no study has considered
the AI based prediction capability of PCa comparing
the three commonly performed stainings: H&E, ERG,
and PIN-4.

We retrospectively studied 106 tissue cores (malig-
nant, n=38; benign, n=68) that we stained with three
different methods, i.e., H&E, ERG, and PIN-4. Our
purpose was to evaluate the suitability of basic im-
age features based on the intensity distribution and
the texture of the stained tissue cores to automati-
cally differentiate between PCa tissue and benign tis-
sue. We applied the open source software QuPath (ver-
sion 0.2.0) [28] for segmentation and feature extrac-
tion. We evaluated the prediction power of the features
with three standard ML methods, i.e. neural network
(NN), support vector machines (SVM) and random
forest (RF) with and without optimization of hyper-
parameters and strategies for feature selection, e.g. re-
cursive feature elimination (RFE) [29]. We proposed a
simple automated approach that might be feasible in
clinical routine.

Results
We compared a group of malignant cores with a group
of benign cores. If not indicated otherwise, p-values in
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the following were computed with the Wilcoxon-Mann-
Whitney-U test and corrected for multiple testing by
the Benjamini–Hochberg procedure. Table 1 shows the
number of features with false discovery rates (FDR):
p ≤ 0.05, p ≤ 0.01, and p ≤ 0.001. Not surprisingly,
none of shape features had FDR below 5%.

Table 1: Number of features for the H&E, ERG,
and PIN-4 staining. We applied the Wilcoxon-Mann-
Whitney-U test with Benjamini–Hochberg correction
for multiple testing and selected features with low false
discovery rate, p ≤ 0.05, p ≤ 0.01, and p ≤ 0.001.

significance H&E ERG PIN-4

all 166 165 117

p ≤ 0.05 114 128 76

p ≤ 0.01 105 111 67

p ≤ 0.001 92 93 43

We computed pairwise Pearson correlation coeffi-
cients of features and found features from different
color transforms highly correlated. Due to highly cor-
related features from different color transforms, the
selection of features with highest Gini score of the
Wilcoxon-Mann-Whitney-U test was not a valuable
strategy. To reduce the redundancy of features, we de-
cided to consider, in the first step, only features of a
single color transform for each stain. We compared the
prediction power of features in the color transforms to
select a representative color transform for each stain.

Exemplary, Figure 1 shows the boxplots of Gini co-
efficients of sets of features with p ≤ 0.05 specific for
individual color transforms and stainings H&E (top),
ERG (middle), and PIN-4 (bottom). A Gini coefficient
of one corresponds to perfect prediction power whereas
a Gini coefficient of zero corresponds to no prediction
power, i.e., random choices. The prediction power of
features varies for the stains. For H&E, the prediction
powers of standard color transforms, Red, Green, Blue,
Saturation, Brightness, and OD Sum, were preferable
high with median Gini coefficients of in round numbers
0.6. For stain specific colors Hematoxylin and Eosin,
the median Gini coefficient drops to in round num-
bers 0.4. Residual has the lowest median Gini coeffi-
cient of in round numbers 0.3. For ERG, the median
Gini coefficients are also preferable high. Differences
in the color transforms are more pronounced than in
H&E. Blue has a higher median Gini coefficient than
Red and Green. Note that, counterstaining with hema-
toxylin produces blue-purple signal for cell nuclei. High
concentration of the protein ERG would manifest in a
brownish nuclear signal, i.e., a high value of Red and
Green. Surprisingly, the signal of counter-staining with
hematoxylin has a higher median prediction power

Figure 1: Prediction power of sets of features with
p ≤ 0.05 for H&E staining (top), ERG staining
(middle), and PIN-4 staining (bottom). Boxplots
of Gini coefficients of features are given specifically
for color transforms: Red, Green, Blue, Saturation,
Brightness, and OD Sum. For H&E, additional box-
plots of the stain specific colors Hematoxilin, Eosin,
and Residual are plotted. For ERG, additional box-
plots of the stain specific color transforms Hematox-
ilin, ERG, and Residual are plotted. The prediction
power of features varies for the color transforms in
each staining.

than the signal of ERG itself. Brightness has a higher
prediction power than Saturation. Compared to ERG
and H&E, the features of PIN-4 have rather low medi-
ans of Gini coefficient. An exceptional high Gini score
of 0.865 gives, however, Maximum Saturation.

In the following, we denote features with p ≤ 0.001
as statistically significant. For H&E and ERG, we took
the features of color transform Brightness that were
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significant. For PIN-4, we chose the significant features
of color transform Saturation. The significant features
were, ordered by decreasing Gini score:

• H&E staining, color transform Brightness, 12 sig-
nificant features: F11, F12, F0, F4, F2, F9, F8,
Median, Mean, F5, F7, F10.

• ERG staining, color transform Brightness, 13 sig-
nificant features: Mean, F5, F7, F8, Median, F10,
F4, F0, F9, F1, Std.dev., F3, F6

• PIN-4 staining, color transform Saturation, 16 sig-
nificant features: Max, F12, F0, F7, F8, Median,
Mean, F5, F9, F2, F4, F6, Std.dev., F3, F10, F1.

On these stain specific sets of features, we applied
three ML algorithms: support vector machines classi-
fier (SVM), neural networks (NN), and random forest
(RF). Monte Carlo cross-validation with 100 random
splits into 70% training set and 30% test determined
the mean area under the curve (AUC) of the receiver
operating characteristic (ROC) curve.

Table 2 shows, in the rows denoted by ”default”, the
mean AUC with standard deviation. The mean values
of AUC are preferable high, 0.81 ≤ AUC ≤ 0.93, and
demonstrate the prediction power of the three groups
of features for H&E, ERG, and PIN-4, respectively.
The group of features of PIN-4 yields the best results.
NN performs with the mean AUC of 0.93 ± 0.05 for
the group of selected features of PIN-4. The range of
values of AUC, however, do not exceed the values that
might be expected from the Gini score of individual
features. Note that, the Gini score of 0.865 of a single
feature, Maximum Saturation of PIN-4, corresponds
to an AUC of 0.93. Exemplary, Figure 2 shows the
mean ROC curve of a Monte Carlo 100 random split
cross-validation for NN and the 16 significant features
in color transform Saturation of stain PIN-4.

To enhance the performance of the algorithms, we
applied an exhaustive grid search to optimize their
hyper-parameters. For the values of the optimized
hyper-parameters, we refer to Table 6 in Materials
and Methods. Table 2 gives, in the rows denoted by
”tuned”, the mean AUC yielded by the classifiers with
optimized parameters. The optimization of parameters
improves the results for SVM and features of H&E,
i.e., the mean AUC increases from 0.81 to 0.91. For
all other combinations of ML algorithms and features
sets, the optimization yields none or only minor im-
provement less than ∆AUC ≤ 0.03.

Since parameter optimizations yielded only small im-
provements of prediction power, we tested whether
other groups of features may yield better results. We
applied recursive feature elimination (RFE) [29] to se-
lect sets of non-redundant features from all color trans-
forms of a stain. To reduce the computational expense
of RFE, we removed shape features and redundant fea-
tures by setting thresholds for the Pearson correlation

Figure 2: ROC curves of Monte Carlo cross-
validation with 100 random splits. The blue curve
denotes the mean ROC curve and the shaded gray
area highlights its standard deviation. NN uses 12
significant features of the color transform Satura-
tion of stain PIN-4 to compute the curves, see text.
The mean value of AUC 0.93 ± 0.05 is preferable
high and demonstrates the prediction power of the
features of the color transform Saturation of stain
PIN-4.

coefficient. We chose thresholds for the Pearson corre-
lation as large as possible but with the restriction to
make the computation feasible of a conventional lap-
top computer with i7 processor and 8 GByte memory.
The number of non-redundant features were n = 84
(PIN-4, Pearson correlation ≤ 0.95), n = 104 (H&E,
Pearson correlation ≤ 0.99), and n = 53 (ERG, Pear-
son correlation ≤ 0.95). We applied RFE with succes-
sively increased numbers of top features and saved the
set with highest accuracy. If two sets yielded identical
accuracy, we favoured the smaller set. For the three
stains, RFE yielded the sets:

• H&E staining, 25 features with mean accuracy
0.780 ± 0.061:
Hematoxylin: Haralick Contrast (F1), Haralick
Entropy (F8), Eosin: Haralick Contrast (F1), Har-
alick Sum of squares (F3), Haralick Sum vari-
ance (F6), Residual: Max, Haralick Correlation
(F2), Haralick Sum variance (F6), Haralick In-
formation measure of correlation 1 (F11), Haral-
ick Information measure of correlation 2 (F12),
Green: Haralick Contrast (F1), Haralick Sum av-
erage (F5), Haralick Sum entropy (F7), Haral-
ick Difference entropy (F10), Blue: Haralick Con-
trast (F1), Haralick Sum entropy (F7), Haralick
Entropy (F8), Haralick Difference entropy (F10),
Brightness: Min, Saturation: Haralick Contrast
(F1), Haralick Entropy (F8), Haralick Difference
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Table 2: Mean AUC for three ML algorithms, support vector machines classifier (SVM), neural network (NN),
and random forest (RF), trained on the sets of features from three stains, H&E (n=12), ERG (n=13), and
PIN-4 (n=16), see text.

SVM RF NN

default tuned default tuned default tuned

H&E 0.81± 0.08 0.91± 0.05 0.82± 0.06 0.83± 0.07 0.85± 0.07 0.88± 0.07

ERG 0.83± 0.05 0.86± 0.06 0.85± 0.06 0.85± 0.06 0.86± 0.06 0.86± 0.06

PIN-4 0.92± 0.06 0.94± 0.05 0.91± 0.05 0.92± 0.05 0.93± 0.05 0.94± 0.04

entropy (F10), and OD Sum: Max, Haralick En-
tropy (F8), Haralick Difference entropy (F10).

• ERG staining, 9 features with mean accuracy
0.829 ± 0.066:
Red: Median, Haralick Sum of squares (F3),
Green: Mean, Haralick Contrast (F1), Bright-
ness: Haralick Contrast (F1), Haralick Sum vari-
ance (F6), Haralick Sum of squares (F3), and OD
Sum: Haralick Entropy (F8), Haralick Sum en-
tropy (F7).

• PIN-4 staining, 5 features with mean accuracy
0.973 ± 0.037:
Red: Median, Haralick Sum variance (F6), Blue:
Haralick Sum of squares (F3), Haralick Contrast
(F1), and Saturation: Haralick Sum variance (F6).

To compute reference accuracy values for the three sets
of selected features, we applied NN and Monte Carlo
cross-validation with 100 random splits into 70% train-
ing set and 30% test. With 25 selected features for
H&E stain, NN discriminated with mean accuracy of
78.0% between malignant and benign cores. With nine
selected features for ERG stain, NN reached a mean
accuracy of 82.9%. With only five selected features for
PIN-4, NN reached a favorable high mean accuracy of
97.3%.

Table 3 gives, the AUC for SVM, RF, and NN.
The AUC scores are averaged over Monte Carlo cross-
validation with 100 random splits. Compared to the
corresponding AUC scores in Table 2, either no or mi-
nor improvement can be observed for stains H&E and
ERG. For stain PIN-4, SVM and NN computed nearly
perfect AUC of 0.99, see Figure 3 for the mean ROC
curve of NN.

Discussion and conclusion
Automatically extracted features of the texture and
intensity distribution of stained TMA turned out to be
highly valuable to distinguish between malignant and
benign tissue of the prostate gland. High prediction
power could be shown already for individual features,
as, e.g., Maximal Saturation of the PIN-4 stain. The
three staining protocols H&E, ERG, and PIN-4 yielded
different prediction power.

Table 3: Mean AUC values for three ML algorithms:
SVM, RF, and NN, and three sets of features, H&E
(n=25), ERG (n=9), and PIN-4 (n=5). The features
are selected by recursive feature elimination (RFE),
see text. Only for PIN-4 stain, RFE significantly im-
proves the AUC compared to Table 2. With five fea-
tures selected for stain PIN-4, SVM and NN reach a
favorable high AUC= 0.99 ± 0.01 .

SVM RF NN

H&E 0.83± 0.07 0.81± 0.07 0.82± 0.07
ERG 0.90± 0.05 0.87± 0.06 0.90± 0.05
PIN-4 0.99± 0.01 0.95± 0.04 0.99± 0.01

Cost-effective and simple H&E revealed promising
results. Our results for H&E, e.g., AUC= 0.91 ± 0.05,

Figure 3: ROC curves of Monte Carlo cross-
validation with 100 random splits. The blue curve
denotes the mean ROC curve and the shaded gray
area highlights its standard deviation. NN uses five
features of the staining PIN-4 that are selected by
recursive feature elimination (RFE), see text. The
mean value of AUC 0.99 (mean accuracy 97.6% )
demonstrates the power of the features of stain PIN-
4 to discriminate between malignant and benign tis-
sue cores.
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SVM, tuned, were not impressive when compared to
results of previous studies applying deep learning. Re-
cently, AUC of in round numbers 0.99 have been re-
ported for the application of convolutional neural net-
works to H&E stained TMA [30] and whole slide im-
ages [20]. Application of deep learning requires large
number of data. Its black-box characteristic may be
seen as possible drawback for medical decision making
[31, 32, 30].

ERG stain revealed results of similar quality as H&E.
Averaged over all cores, staining high expression of the
proto-oncogene ERG seems to give no advantage com-
pared to a simple H&E stain. In individual cases, the
ERG stain may give valuable additional information.
The size of our dataset did not enable us to test ERGs
capability to potentially aid in differentiating variant
states of prostate cancer aggressiveness. We abstained
from testing the possible advantage of the combination
of features of ERG stain with features of other stains,
e.g., H&E and PIN-4.

In our study, PIN-4 showed the most accurate re-
sults. For PIN-4, SVM and NN yielded AUC= 0.94 ±
0.05 for features extracted from color transform Sat-
uration. PIN-4 has been reported to be useful in dis-
tinguishing prostatic adenocarcinoma from the benign
mimickers [27, 33, 34]. We applied the stain PIN-4 as
a cocktail of two antibodies, a brownish signal for high
molecular weight cytokeratins, and a second, reddish
signal for the protein alpha-methylacyl-CoA race-mase
(AMCAR,P504S). P504S is a biomarker for prostate
adenocarcinoma [35, 36]. Positive staining with a mon-
oclonal antibody to high molecular weight cytokeratins
has been shown to be of value in distinguishing be-
tween well-differentiated, small-acinar prostatic ade-
nocarcinoma and its mimics [37]. Therefore, the supe-
rior performance of PIN-4 compared to H&E and ERG
is not surprising. To our knowledge, PIN-4’s potential
application for automatic stratification of PCa in med-
ical AI has not been tested up to now. In AI applica-
tions, staining with PIN-4 has been merely used as a
preferable additional immunohistochemical workup to
generate the ground truth by visual inspection [8, 22].

In the year 2010 Sabata et al. [27] studied the poten-
tial of computer aided diagnoses of PIN-4 stained nee-
dle biopsies. Their algorithm has identified the glands
in the tissue and has classified the glands by the three
simple criteria:
1 ”If gland has only the brown basal staining then

the tumor is benign”
2 ”If gland has both the red racemace and the

brown basal staining then it is classified as high-
grade prostatic intraepithelial neoplasia (HG-
PIN)”

3 ”If gland has only the red racemace then it is clas-
sified as adenocarcinoma.”

Sabata et al. have discussed several possible sources of
missclassification. For small glands, a big variation in
the intensity of racemace staining may cause recogni-
tion of the red staining to be error prone. It has been
important to not merge a gland with the surround-
ing glands or the diagnosis would have been incorrect.
Note that, automated object segmentation is a task
and a potential source of missclassification. In view
of recent studies, the three simple rules proposed by
Sabata et al. are not likely to be able to account for
possible heterogeneity of staining of benign and malig-
nant tissue. It is possible that benign glands may show
some weak to moderate AMCAR expression and on
the other hand it is not a necessity for prostate cancer
to be AMCAR positive (especially high grade subtypes
can be negative and inter- and intratumoral hetero-
geneity can occur) [38, 39]. For benign tissue, e.g., tis-
sue of atypical adenomatous hyperplasia (AHH), high
expression of AMCAR has been reported in up to more
than 50% of the cases [40].

In our approach, we used intensity and texture fea-
tures of a core with, in general, multiple glands for
its classification. Ranking features by their prediction
power, i.e., their Gini coefficient, we found Maximum
Saturation of PIN-4 by far the top feature. High Max-
imum Saturation indicated malignancy; 87% , i.e., 33
out of 38, malignant cores compared to only 6%, i.e.,
four out of 66, benign cores had Maximum Saturation
above 0.953.

Why the presence of a pixel with high Saturation
in a core was the best single indicator for malignancy
can easily be understood. For rgb-values, Red, Green,
Blue, of a pixel the Saturation, s, is determined by s =
1 − min(Red,Green,Blue)/max(Red,Green,Blue).
Left part of Figure 4 shows a malignant core (ID:
RPX1:7B) with largest value of Maximum Saturation.
Middle part of Figure 4 shows a region that contains a
gland surrounded by basal cell with brownish membra-
nous signal. The basal cells appear darker than cells in
the left bottom part of the region with a pure reddish
cytoplasmic signal. Right part of Figure 4 shows Sat-
uration of the blow-up. The basal cells with brownish
membranous signal (inside the outline of the gland)
have a lower Saturation than cells with dominant red-
dish cytoplasmic signal for AMCAR (inside the circle,
left bottom). The cells inside the outline vanished for
the range of Saturation 0.91 ≥ s ≥ 1.

Brownish membranous signal for cytokeratin yielded
low values of Saturation whereas a pure reddish cyto-
plasmic signal for AMACR yielded high values of Sat-
uration. Maximum Saturation identified a local region
(2µm resolution) with reddish cytoplasmic signal and
no brownish membranous signal for cytokeratin. The
presence of such a local region inside a core with high
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Figure 4: Left part: Malignant core (ID: RPX1:7B) stained with PIN-4. A zoom in region is marked by a
rectangle. Middle part : Zoom into the marked region. In its upper right part, the blow–up shows brownish
basal cells surrounding a gland and in the lower left part cells with dominant reddish cytoplasmic signal for
AMACR. Right part: Saturation of the marked region. In the upper right part, a red outline indicate position
and shape of the gland. In the left bottom part, a red circle indicate a region with dominant reddish signal.
Brownish basal cells have lower Saturation than reddish cells.

Figure 5: Malignant cores with Maximal Saturation below 0.953. Top left to bottom right, cores
with ID/Maximum Saturation: RPX1:1A/0.808, RPX1:3C/0.889, RPX1:5E/0.894, RPX1:5B/0.919, and
RPX1:7A/0.922. The cores represent high grade prostate cancer (two cores, top left) and low grade prostate
cancers (remaining cores) with heterogenous AMCR expression.
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and pure reddish signal was a good condition to diag-
nose malignancy. Our finding of 87% malignant cores
and 6% benign cores with Maximum Saturation above
0.953 is in line with Murphy et al. [38] who described
91% and 11% AMCR positivity of prostate cancers
and benign tissues, respectively.

Within our data set, we found five malignant cores
with low values of Maximum Saturation. Figure 5
shows the five malignant cores with Maximum Satura-
tion values below 0.953. Based on the threshold value
0.953 for Maximum Saturation, these five cores would
had been missclassified as benign cores. The cores have
low reddish signal if compared to cores with high Sat-
uration as shown, e.g., in Figure 4. The low reddish
signal for some malignant cores might be a results
of the known potential inter- and intra-tumoral het-
erogeneity of prostate cancer AMACR positivity [38].
Heterogenous AMCAR expression is significantly as-
sociated with increased Gleason score and poorly dif-
ferentiated tumors [38]. Respectively, the two tumor
cores on the top left in Figure 5 show AMCAR neg-
ative high grade prostate cancers. The other tumor
cores in Figure 5 show low grade prostate cancers with
low AMCAR expression.

In our data set, we found also four benign cores with
values of Maximum Saturation above 0.953, see Fig-
ure 6. Staining artefacts, see, e.g., core RPX3:1C, or
intense dark brown staining, see, e.g., cores RPX3:2A,
RPX3:7A, and RPX2:8C, lead to high values of Max-
imum Saturation. Three of these four benign cores
were on the same slide, RPX3. Averaged exclusively
over benign cores, Maximum Saturation 0.910± 0.043
of slide RPX3 was higher than Maximum Saturation
0.839 ± 0.029 and 0.873 ± 0.039 of slides RPX1 and
RPX2, respectively. Compared to the mean value of
Maximum Saturation 0.967±0.037 of malignant cores,
the mean values of benign cores on each slide were
low. Slide to slide variations and the potentially het-
erogenous AMCAR expression of malignant and be-
nign glands, however, made it problematic to deter-
mine a global threshold for a classification based solely
on Maximum Saturation. Inclusion of definite benign
tissue with and without AMCAR expression on a slide
as reference for benign saturation values might be a
potential solution.

Our patient cohort was biased towards older popu-
lation (mean age, 66± 6.6 years). Since age-associated
changes in AMACR expression has been reported in
nonneoplastic prostatic tissues [41], age may be a valu-
able additional feature for populations with heteroge-
neous age distributions.

For PIN-4, the algorithms SVM and NN yielded even
higher AUC of 0.99± 0.01 with five features that were
extracted not only from Saturation but also from two

additional color channels, Red, and Blue. The rele-
vance of Red and Blue probably arose from the role of
reddish signal for the protein alpha-methylacyl-CoA
race-masse and the role of brownish signal for high
molecular weight cytokerine, respectively. Saturation
contributed to high value of AUC but, interestingly,
not Maximum Saturation but Haralick Sum Variance
of Saturation was one of the five selected features. In
contrast to the local property Maximum Saturation,
the Haralick Sum Variance measured a global prop-
erty, i.e., a normalized value averaged over all neigh-
bored pixel pairs of a core. In view of the slide to slide
variation of staining in our data set, the application of
a global and normalized Haralick feature may be more
robust than the local measure of Maximum Saturation.

Notice that, our feature selection procedure may suf-
fer from overfitting, for a discussion of a possible bias
we refer to Demirciouglu (2021) [42]. The application
of strategies to avoid overfitting in feature selection
requires a larger data set. Our AUC values of classifi-
cation without feature selection may be more reliable
and relevant for applications to independent data sets.
Despite the possible bias by overfitting, the sets of se-
lected features on its own may be valuable for studies
with independent data set. In future studies, it may be
worthwhile to test deep-learning algorithms on PIN-4
images, to evaluate images of different image resolu-
tions, to develop a suitable color model for PIN-4, and
to study strategies to correct for slide to slide differ-
ences in staining, e.g., by a reference tissue cores or
automated slide specific normalization techniques.

Material and Methods
Patient Cohort
Tissue/tumor samples and patient data were provided
by the University Cancer Center Frankfurt (UCT).
Written informed consent was obtained from all pa-
tients and the study was approved by the institutional
Review Boards of the UCT and the Ethical Committee
at the University Hospital Frankfurt (project-number:
SUG-4-2018). The project expands on the results of
Bernatz et al. [43] and in total 418 patients with con-
firmed PCa who were treated with radical prostatec-
tomy (RPX) between 2014 and 2019 were screened for
study inclusion [43]. In the current study, contrary to
Bernatz et al. [43] patients with neoadjuvant therapy
prior to RPX (n=6) were included and 1 PCa patient
had to be excluded due to an insufficient amount of
PCa-tissue leading to final study cohort of 38 PCa pa-
tients, see Bernatz et al. [43] for details. As negative
control, 10 patients with benign prostatic hyperplasia
(BPH) who were treated with Holmium laser enucle-
ation of the prostate (HoLEP) were used. Inclusion cri-
teria for the HoLEP cohort was (I) suffering from BPH
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Figure 6: Benign cores with Maximum Saturation above 0.953. Top left to bottom right, cores with
ID/Maximum Saturation: RPX3:1C/0.979, RPX3:2A/0.970, RPX3:7A/0.967, and RPX2:8C/0.964. Intense
dark brown stain lead to high values of Maximum Saturation. For RPX3:1C (top left core), the staining
artefact (dark spot in top left part of core) leads to its high value of Maximum Saturation.

and having received (II) treatment with HoLEP with-
out (III) cancerous tissue in the HoLEP tissue. The
final patient cohort comprised of 48 patients (mean
age, 66 ± 6.6 years), 38 patients with PCa and ten
patients with BPH.

Preparation of tissue microarrays

Prior to the TMA establishment, all whole slide spec-
imen were annotated by an uropathologist (JK, 10
years of experience) to (I) delineate the areas of PCa
index lesion with highest international society of uro-
logical pathology (ISUP) score, (II) benign tissue at
the opposite site of the respective PCa slides, and
(III) benign HoLEP specimen. In total, 48 paraffin-
embedded tissue samples from our patient cohort were
used to construct the TMAs by punching 106 represen-
tative tissue cores from the paraffin blocks. The rep-
resentative punch-locations were annotated on respec-
tive H&E-slides of each tissue block which was used
as a mask to identify respective regions on the tissue
block. We punched a core (2mm diameter) from the
index lesion of each PCa-tissue (n = 38). As matched-
controls we used a tissue punch from the benign oppo-
site site of each PCa whole gland specimen (n = 38)

and three independent tissue-punches from each pa-
tient who was treated with HoLEP for benign pro-
static hyperplasia (n = 10 × 3 = 30). In total, 106
cores of prostate tissue (malignant, n=38; benign op-
posite site of PCa-patients, n=38; repetitive punches of
HoLEP tissue, n=30) were punched to constuct TMA
1-3. TMA 1, TMA 2, and TMA 3 contained 42, 42,
and 22 cores of prostate tissue, respectively, see Fig-
ure 7. TMA blocks were cut into 3µm thick slices and
placed on an adhesive glass slide. Unstained slides were
stained with H&E as well as with immunohistochemi-
cal staining ERG and PIN-4.

Histological staining
For immunohistochemistry (IHC), we used DAKO
FLEX-Envision Kit (Agilent, Santa Clara, CA, US)
and the fully automated DAKO Omnis staining system
(Agilent, Santa Clara, CA, US) according to manufac-
turer´s instruction. We applied heat induced epitope
retrieval at 97°C in high pH buffer, EnV FLEX TRS
High pH Buffer (Agilent, Santa Clara, CA, US). After-
wards we applied immunohistochemical epitope stain-
ing for 20 min by either PIN-4 double stain or ERG sin-
gle stain. PIN-4 co-stained high molecular weight cy-
tokeratin, DAKO primary antibody Cytokeratin High
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Figure 7: A TMA slide established at the Insti-
tute of Pathology, University Hospital Frankfurt.
The tissue block with 45 cores, each 2 mm in diam-
eter, is stained with H&E.

Molecular Weight (Clone 34betaE12, GA051, ready to

use dilution, Agilent, Santa Clara, CA, US), and pro-

tein alpha-methylacyl-CoA racemase, AMACR (Clone

13H4, GA060; ready to use dilution, Agilent, Santa

Clara, CA, US). ERG contained single-staining ERG

primary antibody (GA659, Clone EP111, ready to use

dilution, Agilent, Santa Clara, CA, US). For epitope

visualization, we applied DAKO EnVision™ FLEX

DAB+ and Magenta Substrate Chromogen System

(Agilent, Santa Clara, CA, US). PIN-4 double stain

produced a brownish membranous signal for cytok-

eratin and reddish cytoplasmic signal for AMACR.

ERG single stain produced a brownish nuclear sig-

nal for high concentration of the protein ERG. After

immunohistochemical staining, we used hematoxylin,

DAKO hematoxylin solution (Agilent, Santa Clara,

CA, US), for counterstaining. Hematoxylin produced

blue-purple signal for cell nuclei.

For hematoxylin and eosin stain (H&E), slides were

automatically processed using Tissue-Tek Prisma Plus

staining device (Sakura Finetek) and Mayer´s Hema-

toxylin (AppliChem, Darmstadt, Germany) and Eosin

(Waldeck, Münster, Germany) according to manufac-

turer´s instruction. H&E produced blue-purple signal

for acidic cell nuclei and a pink signal for alkaline cy-

tosolic and extracellular structures. Figure 8 shows

three exemplary cores that are stained with H&E,

ERG, and PIN-4, respectively.

Digitalization
We digitised the histologic slides with a digital slide
scanner (Sysmex GmbH, Germany, resolution 2µm per
pixel). We processed the images with an open source
software for digital pathology and whole slide image
analysis, QuPath (version 0.2.0) [28]. The image pro-
cessing included de-arraying of the TMA and compu-
tation of feature values for each core.

Out of a total number of 318 stained cores, 106 cores
times three stains, five cores had to be excluded from
our analysis due to poor staining quality. The five ex-
cluded cores could not be recognized and processed by
QuPath. For the detailed number of processed malig-
nant and benign cores, we refer to Table 4.

Table 4: Number of malignant and benign cores
stained with H&E, ERG, and PIN-4 and processed
with the software QuPath.

staining recognized cores malignant cores benign cores

H&E 105 36 69

ERG 104 35 69

PIN-4 104 36 68

QuPath extracted a grey-scale image for each color
transform Red, Green, Blue (RGB color model), Hue,
Saturation, Brightness (HSB color model) and Opti-
cal Density sum (OD–sum), see [44, 28] for a detailed
description of the color models. We applied color de-
convolution of QuPath to correct for minor variations
between individual slides. For H&E, color deconvolu-
tion determined slide specific color vectors for Hema-
toxylin, Eosin, and Residual. For ERG, color deconvo-
lution determined slide specific color vectors for Hema-
toxylin, ERG, and Residual. For PIN-4, color decon-
volution determined slide specific color vectors that
varied strongly from slide to slide and an unique as-
signment to stains was not possible. The limited ability
of automated deconvolution to account for more than
two stains may be the reason for the failure of color
deconvolution in the case of the triple staining PIN-4.

We chose the set of standard features of QuPath.
QuPath computed standard features for each core, as,
e.g., five features of the intensity distribution, thirteen
Haralick features based on the co-occurrence matrices
for the texture, and shape values, as, e.g., area, cir-
cularity, solidity, max/min diameter of the core [28].
Within QuPath, the Haralick features are denoted by
abbreviations F0–F12, for a list of abbreviations of fea-
tures we refer to Table 5. After elimination of features
with missing values or zero variance, we recorded 167,
166, and 172 features values for a core stained with
H&E, ERG, and PIN-4, respectively.
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Figure 8: Three exemplary cores from TMAs demonstrating three stains: (A) H&E, (B) ERG, and (C)
PIN-4. The images show subsections of TMA prepared at the Institute of Pathology, University Hospital
Frankfurt.

Table 5: Abbreviation of predefined standard features
in QuPath [28]. Five of the standard features are based
on the intensity distribution and 13 are Haralick tex-
ture features.

Intensity-based basic features (5) Abbreviation

Mean value Mean
Standard deviation Std
Minimum value Min
Maximum value Max
Median value Median

Intensity-based Haralick features (13) Abbreviation

Angular second moment F0
Contrast F1
Correlation F2
Sum of squares F3
Inverse difference moment F4
Sum average F5
Sum variance F6
Sum entropy F7
Entropy F8
Difference variance F9
Difference entropy F10
Information measure of correlation 1 F11
Information measure of correlation 2 F12

Statistical Analysis
We applied the non-parametric Mann–Whitney U
test [45] to compare two unpaired groups, e.g., ma-
lignant versus benign tissue. The Mann-Whitney test
computes the U statistic of two samples. The U statis-
tic determines the significance of the inequality of the
two groups and the Gini coefficient. The Gini coef-
ficient can be scaled to the area under the receiver
operating characteristic (ROC) curve (AUC) [46]. The
AUC represents the probability that a randomly cho-
sen subject is correctly classified. An AUC of 0.5 cor-

responds to a random choice and an AUC of 1.0 cor-
responds to a perfect discrimination between the two
groups [47, 46]. To correct the significance for multiple
testing, we applied a Bonferroni adjustment and com-
puted the false discovery rate (FDR) by the Benjamini-
Hochberg procedure [48].

Parameter optimization
We optimized hyperparameters with the function
model selection.GridSearchCV of the scikit-learn
library (version 0.22.1) [49] in Python. For SVM,
we adjusted the regularization parameter, C, ker-
nel coefficient, γ, and kernel. For RF, we adjusted
number of trees in the forest, n estimators, the
maximum depth of the tree, max depth, randomness
of the bootstrapping of the samples, random state,
the minimum number of samples required to split
an internal node, min samples split, and the min-
imum number of samples required at a leaf node,
min samples leaf. For NN, we adjusted structure of
a network, hidden layer sizes, activation function,
activation, learning rate schedule for weight up-
dates, learning rate, solver for weight optimization,
solver, regularization term, α, maximum number of
iterations, max iter, and random number generation
for weights and bias initialization, random state. For
the customized hyper–parameters, we refer to Table 6.

Software
We processed tissue microarrays with the open source
software for digital pathology and whole slide image
analysis QuPath (version 0.2.0) [28]. We wrote Python
scripts (Python version 3.7.6) [50]) in Jupyter Note-
book [51]. We used modules from the scipy package
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Table 6: Customized hyperparameters of the classifiers support vector machines classifier (SVM), neural net-
works (NN), and random forest (RF). We performed an exhaustive grid search to enhance the precision of the
classifiers for each individual staining, H&E, ERG, and PIN-4.

SVM RF NN

H&E C = 1000,
γ = 0.00001,
kernel=’linear’,
probability=True

random state= 1,
max depth= 15,
n estimators= 500,
min samples split= 2,
min samples leaf= 1

hidden layer sizes= (1, 100),
learning rate=’constant’,
random state= 1,
solver=’lbfgs’

ERG C = 0.1,
γ = 0.005,
kernel=’rbf’,
probability=True

n estimators= 100,
max depth= 25

hidden layer sizes= (1, 100),
activation=’identity’,
α = 0.0001

PIN-4 C = 100,
γ = 0.0001,
kernel=’linear’,
probability=True

random state=1,
max depth= 15,
n estimators= 500,
min samples split= 2,
min samples leaf= 1

hidden layer sizes= (1, 100),
activation=’logistic’,
max iter= 1000,
random state= 1,
learning rate=’constant’,
solver=’lbfgs’,
α = 0.001

(version 1.4.1) [52] for statistical calculations and ap-
plied ML algorithms from the scikit-learn library (ver-
sion 0.22.1) [49].
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